Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of 161Tb-folate and 177Lu-folate
نویسندگان
چکیده
BACKGROUND The radiolanthanide (161)Tb has, in recent years, attracted increasing interest due to its favorable characteristics for medical application. (161)Tb exhibits similar properties to the widely-used therapeutic radionuclide (177)Lu. In contrast to (177)Lu, (161)Tb yields a significant number of short-ranging Auger/conversion electrons (≤50 keV) during its decay process. (161)Tb has been shown to be more effective for tumor therapy than (177)Lu if applied using the same activity. The purpose of this study was to investigate long-term damage to the kidneys after application of (161)Tb-folate and compare it to the renal effects caused by (177)Lu-folate. METHODS Renal side effects were investigated in nude mice after the application of different activities of (161)Tb-folate (10, 20, and 30 MBq per mouse) over a period of 8 months. Renal function was monitored by the determination of (99m)Tc-DMSA uptake in the kidneys and by measuring blood urea nitrogen and creatinine levels in the plasma. Histopathological analysis was performed by scoring of the tissue damage observed in HE-stained kidney sections from euthanized mice. RESULTS Due to the co-emitted Auger/conversion electrons, the mean absorbed renal dose of (161)Tb-folate (3.0 Gy/MBq) was about 24 % higher than that of (177)Lu-folate (2.3 Gy/MBq). After application of (161)Tb-folate, kidney function was reduced in a dose- and time-dependent manner, as indicated by the decreased renal uptake of (99m)Tc-DMSA and the increased levels of blood urea nitrogen and creatinine. Similar results were obtained when (177)Lu-folate was applied at the same activity. Histopathological investigations confirmed comparable renal cortical damage after application of the same activities of (161)Tb-folate and (177)Lu-folate. This was characterized by collapsed tubules and enlarged glomeruli with fibrin deposition in moderately injured kidneys and glomerulosclerosis in severely damaged kidneys. CONCLUSIONS Tb-folate induced dose-dependent radionephropathy over time, but did not result in more severe damage than (177)Lu-folate when applied at the same activity. These data are an indication that Auger/conversion electrons do not exacerbate overall renal damage after application with (161)Tb-folate as compared to (177)Lu-folate, even though they result in an increased dose deposition in the renal tissue. Global toxicity affecting other tissues than kidneys remains to be investigated after (161)Tb-based therapy, however.
منابع مشابه
A Short-Term Biological Indicator for Long-Term Kidney Damage after Radionuclide Therapy in Mice
Folate receptor (FR)-targeted radionuclide therapy using folate radioconjugates is of interest due to the expression of the FR in a variety of tumor types. The high renal accumulation of radiofolates presents, however, a risk of radionephropathy. A potential option to address this challenge would be to use radioprotectants, such as amifostine. Methods for early detection of kidney damage that-i...
متن کامل177Lu-EC0800 combined with the antifolate pemetrexed: preclinical pilot study of folate receptor targeted radionuclide tumor therapy.
Targeted radionuclide therapy has shown impressive results for the palliative treatment of several types of cancer diseases. The folate receptor has been identified as specifically associated with a variety of frequent tumor types. Therefore, it is an attractive target for the development of new radionuclide therapies using folate-based radioconjugates. Previously, we found that pemetrexed (PMX...
متن کاملEvaluation of cellular S-value of auger electrons emitting 111In radionuclide by Geant4 and its comparison with MCNP5 Monte Carlo codes and MIRD published data
Introduction: Now day Ionizing radiation has found increasing applications in cancer treatment. However, in the treatment different kinds and size of tumors especially metastatic and small size tumors, conventional methods of external radiation therapy are not common. In radionuclide therapy, the use of monoclonal antibodies has made it possible to achieve maximum dose to small size tumor and m...
متن کاملFluorescent, Plasmonic, and Radiotherapeutic Properties of the 177Lu–Dendrimer-AuNP–Folate–Bombesin Nanoprobe Located Inside Cancer Cells
The integration of fluorescence and plasmonic properties into one molecule is of importance in developing multifunctional imaging and therapy nanoprobes. The aim of this research was to evaluate the fluorescent properties and the plasmonic-photothermal, therapeutic, and radiotherapeutic potential of 177Lu-dendrimer conjugated to folate and bombesin with gold nanoparticles in the dendritic cavit...
متن کاملEvaluation of the relative biological effectiveness of the Auger electrons produced during gadolinium neutron capture therapy using microdosimetric approach
Determination of the relative biological effectiveness (RBE) of Auger electrons is a challenging task in radiobiology. In this study, we have estimated the RBE of internal conversion (IC) and Auger electrons released during Gadolinium neutron capture reaction (GNCR) by means of biological weighting functions (BWFs) with microdosimetric approach. Regarding the different distribution of Gadoliniu...
متن کامل